5 research outputs found

    Numerical solution of the Ericksen-Leslie model for liquid crystalline polymers free surface flows

    Get PDF
    In this paper we present a finite difference method on a staggered grid for solving two-dimensional free surface flows of liquid crystalline polymers governed by the Ericksen–Leslie dynamic equations. The numerical technique is based on a projection method and employs Cartesian coordinates. The technique solves the governing equations using primitive variables for velocity, pressure, extra-stress tensor and the director. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. Code verification and convergence estimates are effected by solving a flow problem on 5 different meshes. Two free surface problems are tackled: A jet impinging on a flat surface and injection molding. In the first case the buckling phenomenon is examined and shown to be highly dependent on the elasticity of the fluid. In the second case, injection molding of two differently shaped containers is carried out and the director is shown to be strongly dependent on its orientation at the boundaries

    Surface tension implementation for Gensmac 2D

    Get PDF
    In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension

    Numerical investigation of directory orientation and flow of nematic liquid crystals in planar 1:4 expansion

    No full text
    Numerical solutions to the equations describing Ericksen-Leslie dynamic theory for 2D nematic liquid crystal flows subject to a magnetic field are obtained. The governing equations are solved by a finite difference technique based on the GENSMAC methodology. The resulting numerical technique was verified by comparing numerical solutions for 2D-channel flow by means of mesh refinement. To demonstrate the capabilities of this method, the flow of a nematic liquid crystal in a planar 1:4 expansion was simulated. Calculations were performed for various Ericksen and Reynolds numbers. The results showed that an increase in the Ericksen number caused the appearance of lip and corner vortices
    corecore